Introduction to Bitcoin and Blockchain Technology

For first-time users

Konstantinos Karasavvas

What is it?

- Bitcoin is:
 - a decentralized digital (crypto-)currency
 - a decentralized payment network
 - a technology
 - a peer-to-peer network/protocol
 - an immutable public transaction ledger (aka blockchain)
 - a proof-of-work algorithm
 - a decentralized trustless platform using elliptic-curve cryptography (PKI)
 - a novel consensus mechanism

- bank creates/controls currency
- transfer of value via an institution
- higher-fees / centralized control

Centralized

- bank creates/controls currency
- transfer of value via an institution
- higher-fees / centralized control

- currency is created algorithmically and distributed
- direct transfer of value from A -> B
- no intermediaries / no corruption

Centralized

Decentralized

- digital
 - o 9.00 -15.00 Mon-Fri
 - $\circ \quad \text{ inter-institution fees } \\$

Centralized

- digital
 - o only pre-requisite is an internet connection
 - Global
 - o **24/7**

Decentralized

- anti-counterfeiting
 - centralized control
 - enforced by bank -> state -> police

Centralized

- anti-counterfeiting
 - algorithms
 - enforced by cryptography

Currency characteristics (controlled supply)

Total Bitcoins over time

• Bitcoin

- issued every ~10 minutes
- 99% up to ~2040
- deflationary
- Fiat currency (euro, dollars, etc.)
 - $\circ \quad \text{ inflationary } \quad$

Currency characteristics (transparent rules)

- Transparent rules
 - which transactions are valid?
 - how is ownership determined?
 - how are new coins distributed?
- Open source software
 - $\circ \quad \text{ anyone can verify} \quad$

Currency characteristics (consensus-based)

- valid rule set
 - majority governs current
 - e.g. which transactions occurred

How it works

- Bird's eye view
 - peer-to-peer network (of)
 - bitcoin nodes (open source software)
 - run and secure the network
 - transaction history (aka blockchain)
- Why run a bitcoin node?
 - volunteerism
 - bitcoin rewards
- Mining
 - \circ secures the network
 - the process of minting new coins

Next: Some use cases

Applications

- Remittances
- Payments
- Micropayments
- Bank services for the unbanked
- Store of Value
- Digital Tokens
- Decentralized Applications
- Proof of Existence
- Smart Contracts
- Decentralized Autonomous Organizations
- Internet of Things / Machine to Machine
- Voting / Identity
- Private Blockchains
- Other?

Remittances

- €600 billion market
 - Western Union (15%)
 - MoneyGram
- High fees
 - \circ depends on location
 - up to 25%
 - $\circ \quad \ \ {\rm more \ for \ same \ day \ delivery}$
- Up to same day delivery
- Anywhere there is an agent
- Working hours
 - $\circ \quad \ \ \mathsf{plus} \ \mathsf{extended} \ \mathsf{hours}$

Remittances

- €600 billion market
 - Western Union (15%)
 - MoneyGram
- High fees
 - depends on location
 - up to 25%
 - more for same day delivery
- Up to same day delivery
- Anywhere there is an agent
- Working hours
 - plus extended hours

- Bitcoin slowly gains momentum
- ~4¢ irrespective of amount
 - o 1BTC = €378
- Up to an hour
 - in practice it is much faster
- Anywhere there is a connected machine
 - Internet (no need for permanent access)
- Anytime
 - o **24/7**
- No intermediaries, but...
 - o bitspark.io
 - rebit.ph
 - bitpesa.co

Making/Receiving Payments

- Online
- Credit cards
 - 3%-6% + small flat rate
- Debit cards
 - 2%-3% + small flat rate
- Paypal
 - o **2.9% + \$0.30**
- Bitcoin
 - none
 - \circ but the sender typically pays ~4¢

Making/Receiving Payments

- Online
- Credit cards
 - 3%-6% + small flat rate
- Debit cards
 - 2%-3% + small flat rate
- Paypal
 - o **2.9% + \$0.30**
- Bitcoin
 - none
 - \circ but the sender typically pays ~4¢
- Merchants can offer discounts for bitcoin!
- Payment Processing?
 - Coinbase, BitPay

Making/Receiving Payments

- Online
- Credit cards
 - 3%-6% + small flat rate
- Debit cards
 - 2%-3% + small flat rate
- Paypal
 - **2.9% + \$0.30**
- Bitcoin
 - o none
 - but the sender typically pays ~4¢
- Merchants can offer discounts for bitcoin!
- Payment Processing?
 - Coinbase, BitPay

- Some major companies
 - Overstock
 - Microsoft
 - Dell
 - Expedia
 - Time Inc.
 - DISH Network
 - Newegg
 - o Zynga
 - UK's Theatre Tickets Direct
 - AirBaltic
 - CheepAir
 - o ...
- Do they keep their bitcoins?
- Can Bitcoin handle demand if widely adopted?

Micropayments

- Pay content creators
 - \circ media
 - o blogs
 - forums
- Many failed
- Flattr
 - click to reward
 - \circ 10% fee from receivers
- ChangeTip
 - Twitter, Reddit, YouTube, Google+, Tumblr, StockTwits
 - \circ $\,$ was 1%, for now none
- ProTip (Chrome extension)
 - open source
 - free
- Zapchain

Micropayments

- Pay content creators
 - \circ media
 - o blogs
 - forums
- Many failed
- Flattr
 - click to reward
 - \circ 10% fee from receivers
- ChangeTip
 - Twitter, Reddit, YouTube, Google+, Tumblr, StockTwits
 - was 1%, for now none
- ProTip (Chrome extension)
 - open source
 - free
- Zapchain

- Pay as you go (by the second!)
 - content distribution
 - watchmybit.com
 - streamium.io
 - Netflix-like service?
 - wifi
 - BitMesh (company)
 - Wifiportal21 (open source)
 - other
 - web hosting

...

(payment channels: trustless, 2-2 multi-sig, nLockTime)

Be your own bank

- Bank services for the unbanked/underbanked
 - payments
 - remittances
 - micro-payments / donations
 - ... using Mobiles

Be your own bank

- Bank services for the unbanked/underbanked
 - payments
 - remittances
 - micro-payments / donations
 - ... using Mobiles

- Bank services for the banked
 - capital controls
 - censorship

Be your own bank

- Bank services for the unbanked/underbanked
 - payments
 - remittances
 - micro-payments / donations
 - ... using Mobiles

- Store of value (vs hyper-inflation)
 - gold
 - reserve currencies
 - bitcoin
 - deflationary
 - Latin/South America, China, Russia.

- Bank services for the banked
 - capital controls
 - \circ censorship

Applications

- Remittances
- Payments
- Micropayments
- Bank services for the unbanked
- Store of Value
- Digital Tokens
- Decentralized Applications
- Proof of Existence
- Smart Contracts
- Decentralized Autonomous Organizations
- Internet of Things / Machine to Machine
- Voting / Identity
- Private Blockchains
- Other?

Next: Basic concepts / usage

Basic concepts (Bitcoin address / private key)

Bitcoin Address

1Atuv5zFi5P5dzgfHNGWWR8EWjRSzDbCEL

Private Key

L13HRyX7Lj3TLve4jAx53ink49sR6eLrJP2q5kvijPQDzGBzVARG

Basic concepts (Bitcoin wallets)

• Wallet

- manages bitcoin addresses (accounts)
- can send (receive) bitcoins

• Types

- o desktop
- mobile
- online/web wallet
- hardware wallet

• Wallet examples

- Copay, Mycelium, ...
- https://bitcoin.org/en/choose-your-wallet

Usage: send bitcoins (1)

- Balance
- Activity
- Receive
- Send

Usage: send bitcoins (2)

- To: (address / QR code)
- Amount: (in bitcoins or preferred currency)

	5
Available Balance: 0.338189 BTC Send All	
то	
1LEHs6Xs3gvhb4zXca3dPq2txB6icsjQ6X	
AMOUNT [EUR]	
NOTE Optional	
CANCEL	

Usage: receive bitcoins (1)

- Provide address string, or
- QR code

1LEHs6Xs3gvhb4zXca3dPq2txB6icsjQ6X

SHARE ADDRESS

REQUEST A SPECIFIC AMOUNT

How to get Bitcoins

- Mine Bitcoins
 - nowadays very competitive / difficult
- Buy Bitcoins from an online exchange
 - bitcoins and/of fiat on exchange are controlled by the exchange
- Buy Bitcoins from an ATM
- Buy Bitcoins directly from another user
- Sell services or goods for bitcoins

Next: Tx Propagation and Mining

Proof of Work

From wikipedia:

A **proof-of-work** (**POW**) **system** (or **protocol**, or **function**) is an economic measure to deter denial of service attacks and other service abuses such as spam on a network by requiring some work from the service requester, usually meaning processing time by a computer.

Hashcash

- Proof-of-work system
- hashing
 - arbitrary size to fixed size
 - one-way function

SHA256("Bitcoin meetup!") =>

d7d8992096b2261cd5fb01306149e1ab14a1cefa07e67 41feade682ecb307e89c

SHA256("Bitcoin meetup.") =>

a0236682605c9b25eddf5a82fc9cbe326ae7bffe69807 47ba39f5d4cd7cc2d17

- Example: dealing with email spam
 - hashcash stamp is required in the email
 - email and random number are hased
 - $\circ \quad \ \ \text{first 20 bits need to be zero}$
 - validation requires finding only one hash
 - proposed by Adam Back in 1997
- Example: dealing with Bitcoin transaction spam

Transaction Network Propagation

Miner Nodes - Blocks

Bitcoin Mining

- block is decided
- mining process begins
 - block header is hashed
 - until hash is below target
 - nonce is increased
 - repeat
- nonce space limited (~4.2B)
 - timestamp
 - coinbase transaction

Block Header Version hashPrevBlock hashMerkleRoot timestamp target / difficulty nonce

Block Network Propagation

Block Propagation and Validation

- Blocks need to propagate to all known peers
 - \circ of each node
- Each node will validate the new block
 - \circ and add it to their blockchain
 - forever (!) immutable ledger
- Miner with first valid new block gets the reward
 - After 100 confirmations!

- How do we ensure that miners will not spam the network?
- How do we ensure consistent coin generation?

Mining predictability (15/04/2016)

- current network hashrate: 1,279,029 Th/s (1.27 Eh/s)
 - \circ new block / ~10 minutes
- current difficulty: 178,678,307,672
 - many leading zeros
- but hashrate is fluctuating
 - 2016 blocks (~14 days)

Difficulty = hashrate / (2^256 / max_target / intended_time_per_block)

- = hashrate / (2^256 / (2^208*65535) / 600)
- = hashrate / (2^48 / 65535 / 600)
- = hashrate / 7158388.055

Bitcoin Hash Rate vs Difficulty

Bitcoin Hash Rate vs Difficulty (2 Months)

Next: Bitcoin Forking & Consensus

Introduction

- What is forking?
- Different types of forks
- Challenges and dangers

Fork (software)

- software engineering
 - project fork
 - source code is copied
 - developed independently
 - not just a development branch, but **divergence of direction**
- project and community splits in two
- examples
 - Linux Mint from Ubuntu (from Debian)
 - MariaDB from MySQL
 - PostgreSQL from Ingres
 - OpenSSH from OSSH
 - Inkscape from Sodipodi (from Gill)
 - Plex from XBMC

Fork (blockchain)

- blockchain
 - \circ when the chain of blocks diverges/splits in two
 - forks are expected
 - part of decentralized consensus
- regular forks
- soft-forks
- hard-forks

Regular forks (frequent)

Soft- and Hard-forks

- nodes run the bitcoin open source software
 - different compatible versions (e.g. v0.11.2, v0.12.0)
 - different competing versions (e.g. Satoshi v.0.12.0, Classic v0.12.0)
 - even different implementations (e.g. btcd in GoLang)
- different rules will cause forks
 - intentional forks (software upgrades, alternative implementations)
 - unintentional forks (incompatibilities, bugs)
- soft-forks
 - blocks that would be valid are now invalid
- hard-forks
 - blocks that would be invalid are now valid

Soft-forks

- blocks that would be valid are now invalid
 - both old and new nodes produce blocks
 - new node blocks are fine
 - old node blocks are valid *only* to old nodes
 - forward compatible
- Bitcoin software upgrades
- optional upgrade
 - node can ignore the new blocks
 - at least 51% is needed for upgrade to succeed
- but
 - \circ need to upgrade to use new features

Soft-forks (risks)

- fake confirmation vulnerability
 - old node blocks are valid *only* to old nodes
 - old node blocks will split the network
 - possibility to double spend even after one or more confirmations
 - until fork is resolved
- security risks for the old nodes
 - developers could make new node blocks to appear valid
 - \circ old nodes will not understand the semantics but they will accepted it
 - used for P2SH transactions (BIP 16)
- *temporary* hard-fork (old nodes > 51%)

Hard-forks

- blocks that would be invalid are now valid
 - both old and new nodes produce blocks
 - old node blocks are valid *only* to old nodes
 - new node blocks are valid *only* to new nodes
- Bitcoin network is in conflict
 - two incompatible chains are supported
 - \circ only resolution is for one of the sides to change software

Hard-forks (risks)

- two chains simultaneously
 - fake confirmations vulnerability
 - community splits
- example
 - unintentional fork, March 2013
 - version 0.8 adopted by 60%
 - bug (Berkeley DB -> LevelDB)
 - detected quickly
 - people discussed resolution
 - major miner downgraded to 0.7
 - details: BIP 50

What will happen in a hard-fork?

- blockchain is split in two parallel blockchains
- all bitcoins exist in both blockchains (!)
- miners, merchants, users have to choose
 - directly
 - indirectly
- all transactions after the split are in danger
 - If the split resolves some tx will be rollbacked (possible double-spends)
 - \circ If not, trust in Bitcoin will diminish with price following after, ...
- effectively the value of the network is split

Next: Alt-coins and Meta-coins

Alt-coins

- Coinmarketcap.com
 - ~680 currencies
- Forked Bitcoin's codebase
 - Litecoin (scrypt, 2.5 mins, ...)
 - Dash (X11, anonymity, master node architecture, ...)
 - Monero (Cryptonight, anonymity, ...)
- Cryptocurrency 2.0 projects
 - Ethereum
 - NXT
 - Bitshares
 - MaidSafe

Meta-coins

- Layer on top of Bitcoin's infrastructure
 - Zerocoin (superceded by Zerocash)
 - Colored Coins (Open Assets)
 - CounterParty

Applications

- Remittances
- Payments
- Micropayments
- Bank services for the unbanked
- Store of Value
- Digital Tokens
- Decentralized Applications
- Proof of Existence
- Smart Contracts
- Decentralized Autonomous Organizations
- Internet of Things / Machine to Machine
- Voting / Identity
- Private Blockchains
- Other?

Greek Community

- Bitcoin and Blockchain Tech Meetup (Thessaloniki)
 - http://www.meetup.com/BlockchainGreece-1/
- Bitcoin and Blockchain Tech Meetup (Athens)
 - http://www.meetup.com/BlockchainGreece-0/
- Bitcointalk forum (Greek section)
 - https://bitcointalk.org/index.php?board=120.0
- Blog
 - http://www.bitcoin-gr.org/
- Facebook
 - https://www.facebook.com/groups/bitcoin.gr/?fref=ts
- Reddit
 - reddit.com/r/bitcoin_greece

Questions?

Linkedin: Twitter: Email: Bitrated:

n: https://www.linkedin.com/in/kkarasavvas @kkarasavvas kkarasavvas@gmail.com d: https://www.bitrated.com/kostas