

Pipelines & Workflows: Technical Discussion

Dr. Konstantinos Karasavvas

Introduction

- Pipelines in Biology
 - extensively used to automate experiments
 - simple implementations
 - however, difficult to improve
 - biology is a complex domain
 - majority of legacy tools
 - build just for the job
 - bigger picture?
- Really quick overview
 - Pipelines & Streaming
 - Parallelisation
 - Workflows
 - Taverna
 - Galaxy

Pipelines & Workflows: Technical Discussion

Sequential Execution: basic pipelines

- Coordinator
 - script
- Tasks operate on
 - complete files
- Example: DOS pseudo-pipelines
 - Pipeline implies streaming (and direction)

Pipelines & Workflows: Technical Discussion

Slide: 3

Streaming Pipelines: pipeline parallelism

- Coordinator
 - pipeline 'engine'
- Tasks operate on
 - user-defined processable data chunks
- Example: Unix pipelines

Pipelines & Workflows: Technical Discussion

Slide: 4

Streaming Pipelines (1)

- A data chunk can be anything we want it to be
 - a delimited string (Unix)
 - an object (PowerShell, OGSA-DAI streaming engine)
 - bytes (multimedia frameworks)
 - different discussion
- Pipeline parallelism
 - data chunks are processed *concurrently*
 - depends on implementation!

Pipelines & Workflows: Technical Discussion

Slide: 5

Streaming Pipelines (2)

• Low memory footprint (old/cheap machines & cheaper virtualisation)

Pipelines: bottlenecks (1)

- granularity of a data chunk can be different
 - potential bottleneck: complete file is needed
- consistently different production/consumption rates

Pipelines & Workflows: Technical Discussion

Pipelines: bottlenecks (2)

- resolution: parallelisation
 - really depends on the problem/algorithm, e.g. sort
- embarrassingly parallel
 - map/reduce
- other?
 - parallelize at the code level (sometimes that would require rewrite!)

Pipelines & Workflows: Technical Discussion

Parallelisation (limited)

- single processor (one core)
 - DMA controller
 - e.g. channel I/O
 - hardware multi-threading
 - pseudo multi-core
 - e.g. cache misses
 - SIMD
 - e.g. array iterations
 - ...
- software
 - dev.: threads, SIMD libs
- frequency scaling
 - power consumption issues

Pipelines & Workflows: Technical Discussion

Slide: 9

Parallelisation (1)

Quad-core CPU			
	Core1	Core2	
	Core3	Core4	

- multi-core processor
 - multi-processor machines
 - SMP, NUMA
 - shared memory
- performance shift
 - multi-core parallelism
 - > 2005
- software
 - dev.: threads
 - GUI + processing?
 - not enough
 - parallel programming models
 - e.g. OpenMP [, MPI]

Pipelines & Workflows: Technical Discussion

Slide: 10

Parallelisation (2)

LU MC

- multiple machines
 - clusters
 - usually symmetric
 - e.g. Beowolf cluster
 - grids
 - heterogeneous machines
 - loosely coupled
 - geographically dispersed
- distributed memory
 - data movement overhead!
- processing vs data movement?
- software
 - parallel programming models
 - e.g. MPI [, OpenMP]

Slide: 11

Workflow Management Systems

- components
 - high-level language
 - describes flow of work
 - expressive
 - enactment engine
 - play/pause/resume
 - provenance
 - editor
 - visualisation
- generic workflow systems
 - quite complicated

Pipelines & Workflows: Technical Discussion

Workflow Languages: Example

- parallelisation
- streaming (chunk processing)
- nesting
- conditionals and repetitions
 - many *workflow patterns* (http://www.workflowpatterns.com/)

Pipelines & Workflows: Technical Discussion

letherlands Bioinformatics Centre

Workflow Languages: Abstract vs Concrete

DIC Netherla Bioinform Centre

- started as a tool aggregation and data management system
 - simple pipelines
- components are (local) black boxes with file I/Os
- centralised system
 - tool distribution / administration issues
 - scaling via clustering (distributed memory)
 - tasks can be distributed per node
 - data movement
 - NFS

Pipelines & Workflows: Technical Discussion

Slide: 15

Slide: 16

U C Pipelir

Pipelines & Workflows: Technical Discussion

Workflow System Implementations

- Hundreds!
- Scientific Workflow Systems
 - data-intensive workflows
- Scientific Bioinformatics Workflow systems
 - wikipedia lists around 20
 - Galaxy, Taverna, Kepler, WS-VLAM, ...

What we don't want!

- creating our own ad hoc pipeline/workflow implementation for every type of experiment
 - is that what is happening?
 - distribution of effort
 - no reuse

What we do want! (Ideally)

- a pipeline/workflow solution that we can re-use
 - effort can be concentrated from many groups
 - NBIC BioAssist?

Pipelines & Workflows: Technical Discussion

What can we do?

- serious requirement capture of our pipelines
 - how important is expressing the problem?
 - how important is efficiency?
 - which parts can be streamed or parallelised?
 - which scaling solution covers our needs?
 - can we identify the tools that create bottlenecks?
 - could we just optimise those?
 - SIMD libs, OpenMP, MPI, ... ?
- serious investigation into existing solutions
 - many Bioinformatics Workflow Management Systems
 - are they good enough?
 - should we concentrate efforts on extending one?

Pipelines & Workflows: Technical Discussion

Pipelines & Workflows: Technical Discussion

Slide: 21 Slide:

• How many groups work with *pipelines*?

Pipelines & Workflows: Technical Discussion

Slide: 22 **D D I C** Netherlands Bioinformatics Centre

- How many groups work with *pipelines*?
- What pipeline requirement gathering efforts were made?
 - can we concentrate such efforts?

- How many groups work with *pipelines*?
- What pipeline requirement gathering efforts were made?

- can we concentrate such efforts?
- What workflow system investigation were made?
 - can we concentrate such efforts?

- How many groups work with *pipelines*?
- What pipeline requirement gathering efforts were made?
 - can we concentrate such efforts?
- What workflow system investigation were made?
 - can we concentrate such efforts?
 - did we select Galaxy?
 - do we know why?
 - easy to use? (for whom?)
 - popular?

Pipelines & Workflows: Technical Discussion

Netherlands Bioinformatics Centre

- How many groups work with *pipelines*?
- What pipeline requirement gathering efforts were made?
 - can we concentrate such efforts?
- What workflow system investigation were made?
 - can we concentrate such efforts?
 - did we select Galaxy?
 - do we know why?
 - easy to use? (for whom?)
 - popular?
 - can we make a list of issues with Galaxy?

Slide: 26

- suggest them to the Galaxy team
- implement them ourselves

Pipelines & Workflows: Technical Discussion

- How many groups work with *pipelines*?
- What pipeline requirement gathering efforts were made?
 - can we concentrate such efforts?
- What workflow system investigation were made?
 - can we concentrate such efforts?
 - did we select Galaxy?
 - do we know why?
 - easy to use? (for whom?)
 - popular?
 - can we make a list of issues with Galaxy?
 - suggest them to the Galaxy team
 - implement them ourselves

Slide: 27

Pipelines & Workflows: Technical Discussion